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LLM-105 has a high density, detonation velocity, 
and is relatively difficult to initiate

Monoclinic structure (SG: P21/n (14) )

Long-range H-bonding network

Theoretical results indicate phase 
transitions at 8, 17, 25, 42 GPa1

Theoretical results also indicate 
ambient phase stability to 45 GPa2

Previous Exp. work extends to 6 GPa3

Ambient Pressure Representation of LLM-105
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LLM-105 Powder Diffraction Bragg Peak Positions 
Match Well with Single Crystal X-ray Results

Experimental Details

Ground powder

Silicone oil PTM

Au & Ruby P sensors

400 m diamond culets

Re gasket

XRD experiments 
LBNL/ALS on BL 12.2.2

~ 10 m FW-HM spot

60s exposure per site

FIT2D for integration

GSAS LeBail Refinements

LLM-105 (ambient P-T),  = 0.4959 Å

Calculated – R. Gilardi and R. Butcher 4

4.  R. D. Gilardi and R. J. Butcher,  Acta Crystallographica Section E-structure Reports, Online 57, o657 (2001).

Ambient Pressure X-ray Powder Diffraction Pattern - LLM-105
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Pressure Dependent Powder Diffraction Patterns Do Not 
Reveal a Structural Phase Transition

Pressure Dependent  Diffraction Patterns
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LeBail Powder Diffraction Refinements

With exception to one high d-spacing peak, 
(See: red arrow), all patterns index well to the 
monoclinic structure (SG: P21/n (14) )
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The Experimental LLM105 P-V EOS Matches Well 
to Recent Dispersion Corrected DFT Results
P-V EOS Comparison to Gump et al. and Manaa et al. EOS Param. Comparisons

Weighted 3rd-order

Birch-Murnaghan model

LLNL XRD  | DFT | Gump et al.

Vo (Å3) 750.1  741.0    746.3

Ko (GPa)  11.8    19.7      10.2

K’o 17.8      7.1      23.4

Single Crystal Vo =  748.2 Å3
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The EOS Model That Best Approximates our P-V EOS Data is 
the 1st-order F-f model

F-f EoS Model Fits

LLM105 cold-compression data fit to a first-order 
F-f model. The green line represents an 
unweighted fit and the red line is an experiment-
ally weighted fit. The blue line is from a 3rd order 
B-M fit and the violet line is a Vinet EOS model fit.

F-f 1st-order Confidence Ellipses

Confidence ellipses for the weighted F-f fit. The 
magenta colored ellipse is 0.607-, blue is  1-, 
green is 2- , and the black ellipse is 3- .

Vo = 750.1 Å3

Ko = 15.3 (1.0) GPa

K’o = 9.0 (1.0)
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The Pressure Dependent Axial Ratios Reveal the Onset of Inter-
Sheet Stiffening at ~ 13 GPa

Pressure dependent axial ratios
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The b-axis is the most compressible

The change in slope at ~ 13 GPa signals a 
significant change in the relative 
compressibility along the b-axis (it 
matches the compressibility of the a and 
c axes)

At ~ 13 Gpa, the inter-sheet distance 
becomes nearly the same as intra-
molecular distances
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Questions?


